

EA - 3000 Series Electrochemical Analyzer

EPCC / PRODUCTS / APPLICATION / SOFTWARE / ACCESSORIES / CONSUMABLES / SERVICES

Analytical Technologies Limited

An ISO 9001 Certified Company

www.analyticalgroup.net

>> CS electrochemical workstation (potentiostat / galvanostat)

contains a fast digital functiongenerator, high-speed data acquisition circuitry, a potentiostat and a galvanostat. With high performance in stability and accuracy with advanced hardware and well-functioned software, it isacomprehensive research platform for corrosion, batteries, electrochemical analysis, sensor, lifescience and environmental chemistry etc

>> Application

Reaction mechanism of Electrosynthesis, electrodeposition, anodic oxidation, etc; Electrochemical analysis and sensor;

New energy materials (Li-ion battery, solar cell, fuel cell, supercapacitors), advancedfunctional materials, photoelectronic materials; Corrosion study of metals in water, concrete and soil, etc;

Fast evaluation of corrosion inhibitor, water stabilizer, coating and cathodic protection efficiency.

Specifications				
Support 2-, 3- or 4-electrode system	Potential and current range: Automatic			
Potential control range: ±10V	Current control range: ±2A			
Potential control accuracy: 0.1%×full range±1mV	Current control accuracy: 0.1%×full range			
Potential resolution: 10µV (>100Hz),3µV (<10Hz)	Current sensitivity:1pA			
Rise time: <1µS (<10mA), <10µS (<2A)	Reference electrode input impedance: $10^{12}\Omega$ 20pF			
Current range: 2nA~2A, 10 ranges	Compliance voltage: ±21V			
Maximum current output: 2A	CV and LSV scan rate: 0.001mV~10,000V/s			
CA and CC pulse width: 0.0001~65,000s	Current increment during scan: 1mA@1A/ms			
Potential increment during scan: 0.076mV@1V/ms	SWV frequency: 0.001~100 kHz			
DPV and NPV pulse width: 0.0001~1000s	AD data acquisition:16bit@1 MHz,20bit@1 kHz			
DA Resolution:16bit, setup time:1µs	Minimum potential increment in CV: 0.075mV			
IMP frequency: 10µHz~1MHz	Low-pass filters: covering 8-decade			
Operating System: Windows 2000/NT/XP/7/8/10	Interface: USB 2.0			
Weight / Measurements: 6.5kg, 36.5 x 30.5 x16 cm				

EIS (Electrochemical Impedance Spectroscopy)					
Signal generator					
Frequency range:10µHz~1MHz	AC amplitude:1mV~2500mV				
DC Bias: -10~+10V	Output impedance: 50Ω				
Waveform: sine wave, triangular wave and square	Wave distortion: <1%				
wave					
Scanning mode: logarithmic/linear, increase/decrease					
Signal analyzer					
Integral time:	Maximum:10 ⁶ cycles or 10 ⁵ s				
minimum:10ms or the longest time of a cycle					
Measurement delay: 0~10⁵s					
DC offset compensation					
Potential automatic compensation range: -10V~+10V	Current compensation range: -1A~+1A				
Bandwidth: 8-decade frequency range, automatic and manual	setting				

>> Electrochemical methods/Techniques (Model s' comparison)

Guidance:

Hardware specs and appearance are the same for various models, difference is in softwarepart.

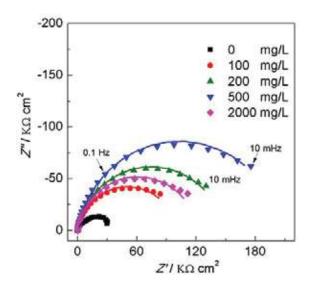
Model CS3350 (with built-in EIS) is the most comprehensive model, includes all methods incl. EIS. It'ssuitable for various applications, and also for teaching

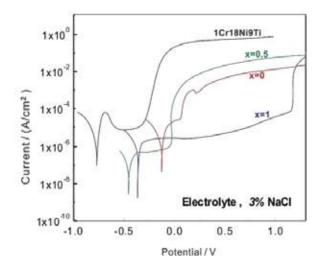
Model CS3310 (with built-in EIS) also includes EIS module. But it has less voltammetry methods compared with CS3350. CS3310 is a cost-effective model if you need EIS. It's an ideal model forcorrosion, battery studies etc.

Model CS3300 (w/o EIS) includes all the voltammetry methods but EIS, usually used in heavy metalions detecting etc.

Model CS3150 (w/o EIS) is the basic modelincl. basic methods such as CV, LSV, charge and discharge, Tafel plot, etc

Model CS3120 is the simplest model with only potentiostat function without galvanostat. If peopleonly use Cyclic voltammetry (CV) in their experiment, CS120 will be a choice.


	Techniques	CS3120	CS3150	CS3300	CS3310	CS3350
	. conniques	W/O EIS	W/O EIS	W/O EIS	With EIS	With EIS
	Open Circuit Potential (OCP)	V	V	V	V	V
Stable	Potentiostatic (I-T curve)	V	V	V	V	V
polarization	Galvanostatic		V	V	V	V
	Potentiodynamic(Tafel plot)	V	V	V	V	V
	Galvanodynamic		V	V	V	V
	Multi-Potential Steps	V	V	V	V	V
Transient	Multi-Current Steps		V	V	V	V
polarization	Potential Stair-Step (VSTEP)	V	V	V	V	V
	Galvanic Stair-Step (ISTEP)		V	V	V	v
Chrono	Chronopotentiometry (CP)		V	V	V	v
methods	Chronoamperometry (CA)		V	V	V	V
methous	Chronocoulometry (CC)		V	V	V	V
	Cyclic Voltammetry (CV)	V	V	V	v	v
	Linear Sweep Voltammetry (LSV)(I-V)	V	V	V	V	V
	Staircase Voltammetry (SCV) #			V		V
Voltammetry	Square wave voltammetry (SWV) #			V		V
,	Differential Pulse Voltammetry (DPV)#			V		V
	Normal Pulse Voltammetry (NPV)#			V		V
	Differential Normal Pulse Voltammetry (DNPV)#			V		V
	AC voltammetry (ACV) #			V		V
	2nd Harmonic A.C.Voltammetry (SHACV)			V		V
	Differential Pulse Amperometry (DPA)					V
Amperometry	Double Differential Pulse Amperometry (DDPA)					V
	Triple Pulse Amperometry (TPA)					V
	Integrated Pulse Amperometric Detection (IPAD)					v
	EIS vs Frequency (IMP)				V	V
EIS	EIS vs Time (IMPT)				v	v
	EIS vs Potential (IMPE)(Mott-Schottky)				V	V
	Cyclic polarization curve (CPP)		V	V	V	V
Corrosiontest	Linear polarization curve (LPR)		v	v	v	v
	Electrochemical Potentiokinetic Reactivation (EPR)		V	V	V	V
	Electrochemical Noise (EN)		V	V	v	v
	Battery charge and discharge		V	V	V	V
	Battery charge and discharge		V	V	v	v
	Galvanostatic charge and discharge (GCD)		V	v	v	v
Battery test	Potentiostatic Charging and Discharging(PCD)		V	v	v	v
	Potentiostatic Intermittent Titration Technique(PITT)		V	V	V	V
	Galvanostatic Intermittent Titration Technique(GITT)		V	V	V	V



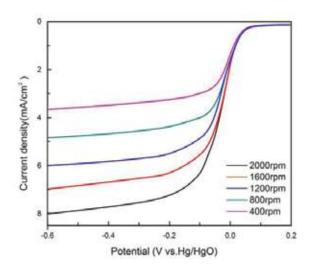
Technical advantages

1. Impedance (EIS)

CS350potentiostat applies correlation integral algorithm and dual-channel over-samplingtechnique, and has strong anti-interference ability. It is suitable for EIS measurements of high-impedance system (>10 9 Ω , such as coating, concrete etc.)

EIS of AA6063 Al alloy in Ce 3+ containing 3% NaCl solution

Polarization curve of Ti-based amorphous alloy & stainless steel in 3%NaCl solution


2. Polarization curve

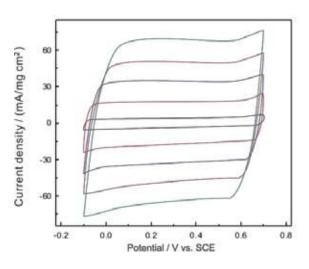
Tafel plot can be obtained. The user can set the anodic reversal current (passivationfilmbreakdown current) of the cyclic polarization curve to obtain material's pitting potential and protection potential and evaluate the its susceptibility to intergranular corrosion. The softwareusesnon-linear fitting to analyze polarization curve, and can make fast evaluation of material'santi-corrosion ability and inhibitors.

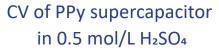
3. Voltammetry

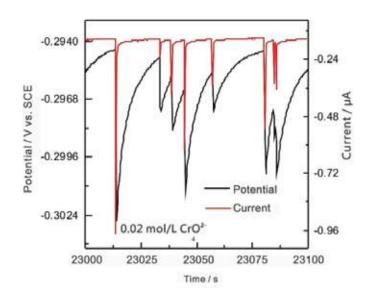
Linear Sweep Voltammetry (LSV), Cyclic Voltammetry (CV), SCV, SWV, DPV, NPV, ACV, Strippingvoltammetry etc. It integrates calculation of peak area, peak current and standard curve analysis.

LSV: mesoporous carbon material in 0.1M KOH

4. Electrochemical Noise

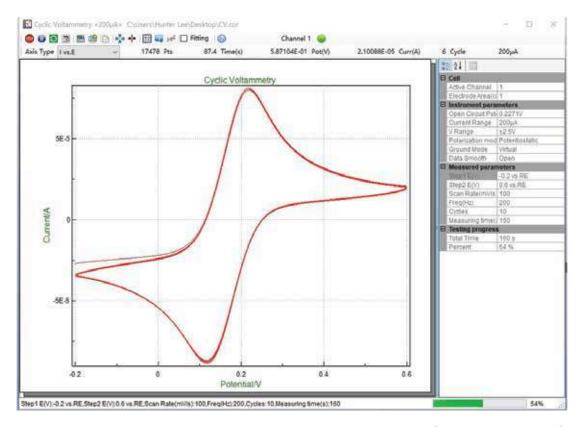

With high-resistance follower and zero-resistance ammeter, it measures the natural potential/current fluctuations in corrosion system. It can be used to study pitting corrosion, galvanic corrosion, crevice corrosion, and stress corrosion cracking etc. Based on calculation of noise resistance and pitting index, it can complete localized corrosion monitoring.


5. Full floating measurement Full-floating mode be used for autoclave electrochemical measurements, on-line corrosion monitoring of metallic components under the ground (rebar in concrete, etc.)

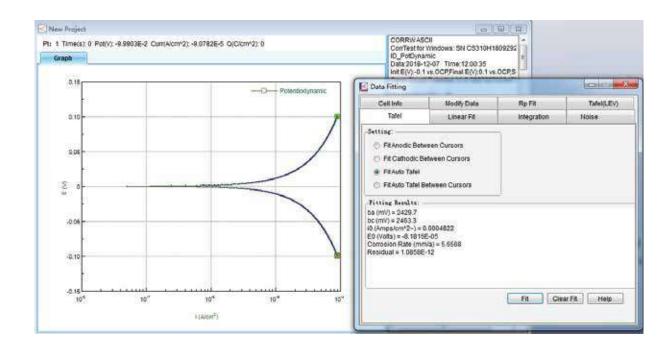

6. User-defined methods

We are able to provide API functions and development examples, which facilitates someusers' requirements for secondary development and self-defined measurements.

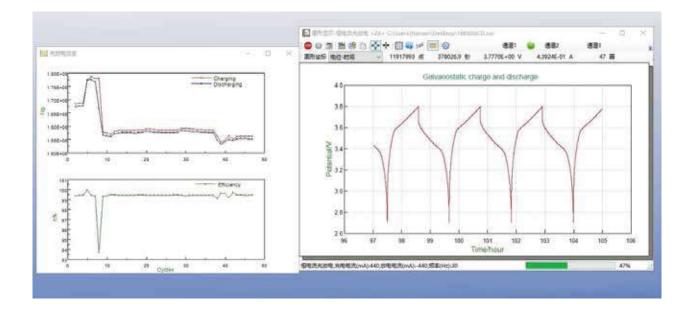
06



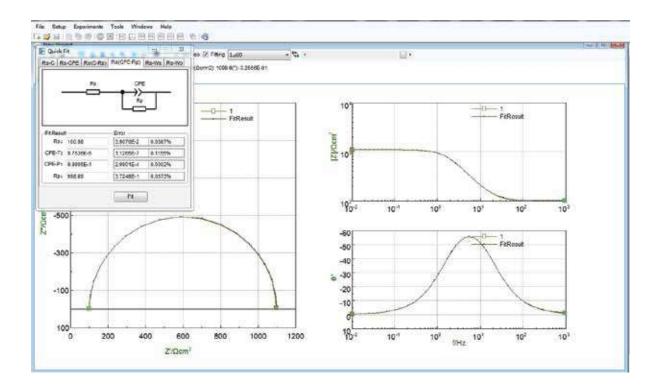
Electrochemical noise of low-carbon steel in 0.05mol/L Cl⁻+0.1mol/L NaHCO₃


Software Features

Cyclic voltammetry: CS studio software provides users a versatile smoothing/differential/integration kit, which can complete the calculation of peak height, peak area and peak potential of CV curves. In CV, during the data analysis, there is function of selecting exact cycle(s) toshow. Youcan choose to see a cycle or some cycles as you want.



Tafel and corrosion rate: CS studio also provides powerful non-linear fitting on Butler-Volmerequation of polarization curve. It can calculate Tafel slope, corrosion current density, limitationcurrent, polarization resistance, corrosion rate. It can also calculate the power spectrumdensity, noiseresistance and noise spectrum resistance based on the electrochemical noise measurements.


Battery test and analysis: charge & discharge efficiency, capacity, specific capacitance, charge&discharge energy.

EIS analysis: Bode, Nyquist, Mott-Schottky (M-S) plot

During EIS data analysis, there is built-in fitting function to draw the custom equivalent circuit. Firstly, draw the equivalent circuit, use the "Quick Fit" to obtain the parameters' value, and then substitute value into the equivalent circuit.

Real-time saving of the data: the data can be automatically saved even in case of suddenpoweroff.Combined measurements: It facilitates the automation of experiments and save time. Youcanchoose several techniques, and set the wait time, the start time, and the cycles. Choosetheexperiments you want to run, then you can make auto measurement of the set experiments as youwant without having to wait in the lab.

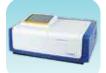
Fil		s Experiments Tools Windows Help	와 문화 관계가
	0000000		
No.	Name	Description	File
V 1	Start the cycle	Cycles:10	
2	Open Circuit Pot	Freq(Hz):5,Hold Time(s):200	C:\Users\Administrat
V 3	Wait	After 60 seconds, testing will be continued	
V 4	EIS vs Frequency	DC Potential(V):0,Amplitude(mV):10,Initial Frequency:100000,Final Frequency:0	C:\Users\Administra
▼ 5	Wait	After 60 seconds, testing will be continued	
6	Potentiodynamic	Init E(V):-0.1 vsOCP,Final E(V):0.1 vsOCP,Scan Rate(mV/s):0.5,Freq(Hz):1	C:\Users\Administra
7	End the cycle	End	

Data open: You can open the data files directly by notepad. Data can also be opened in Origin

HPLC Servicing, Validation, Trainings and Preventive Maintenance :

HPLC Servicir	ng :HPLC Servicing : We have team of service engineers who can attend to any make of HPLC promptly @the most
	affordable cost.
Trainings	:We also take up preventive Maintenace to reduce downtime of HPLC's Trainings.
AMC's/CMC	:AMC's/CMC :We offer user training both in-House and at customer sites on HPLC principles, operations, trouble-
	shooting.
Validations	:Validations :We have protocols for carrying out periodic Validations as per GLP/GMP/USFDA norms.

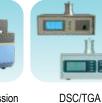
Instruments :Instruments :We offer instruments/Renting Services Modules like pumps, detector etc. on Rent.



About Analytical Technologies

Analytical Technologies is synonymous for offering technologies for doing analysis and is the Fastest Growing Global Brand having presence in at least 96 countries across the global. Analytical Technologies Limited is an ISO:9001 Certified Company engaged in Designing, Manufaturing, Marketing & providing Services for the Analytical, Chromatography, Spectroscopy, Bio Technology, Bio Medical, Clinical Diagnostics, Material Science & General Laboratory Instrumentation. Analytical Technologies, India has across the Country operations with at least 4 Regional Offices, 6 Branch Offices & Service Centers. Distributors & Channel partners worldwide.

Our Products & Technologies



Optical Emission Spectrophotometer

Fully Automated

CLIA

NOVA-2100

Chemistry Analyzer

Optima Gas Chromatograph 3007

Semi Auto Bio

2979 Plus

HEMA 2062 Hematology Analyzer

Flash Chromatograph

Micro Plate Reader/Washer

Atomic Absorption

Spectrophotometer

URINOVA 2800

Urine Analyzer

Ion Chromatograph

Liquid Partical Counter

Total Organic Carbon 3800

Water purification system

Chemistry Analyzer

PCR/Gradient PCR/

RTPCR

TOC

Analyzer

Laser Particle

Size Analyzer

Regulatory compliances

Corporate Social Responsibility

Analytical Foundation is a nonprofit organization (NGO) found for the purpose of:

1.Research & Innovation Scientist's awards/QC Professional Award : Quality life is possible by innovation only and the innovation is possible by research only, hence ANALYTICAL FOUNDATION is committed to identify such personallities for their contributions across various field of Science and Technology and awarding them yearly. To participate for award, send us your details of research / testing / publication at Info@analyticalfoundation.org

2. Improving quality of life by offering YOGA Training courses, Work shops/Seminars etc.

3. ANALYTICAL FOUNDATION aims to DETOXIFY human minds, souls and body by means of yoga, Meditation, Ayurveda, Health Care, Awards, Media, Events, Camps etc.

Technologies Limited

HPLC Solutions MultipleLabs Corporate & Regd. Office:

Analytical House, # E67 & E68,

Gujarat 390 015. INDIA

Ravi Park, Vasna Road, Baroda,

T: +91 265 2253620 +91 265 2252839 +91 265 2252370 F: +91 265 2254395

Analytical Bio-Med **Analytical Distributors**

Analytical Foundation (Trust)

E: info@hplctechnologies.com W. www.analvcalgroup.net info@multiplelabs.com www.hplctechnologies.com info@analyticalgroup.net www.multiplelabs.com info@analyticalbiomed.com www.ais-india.com

Sales & Support Offices: across the country : Distributors & Channel partners World Wide